Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Risi Kondor, Shubhendu Trivedi, Zhen Lin
Journal/Conference Name Advances in Neural Information Processing Systems
Paper Category
Paper Abstract Recent work by Cohen \emph{et al.} has achieved state-of-the-art results for learning spherical images in a rotation invariant way by using ideas from group representation theory and noncommutative harmonic analysis. In this paper we propose a generalization of this work that generally exhibits improved performace, but from an implementation point of view is actually simpler. An unusual feature of the proposed architecture is that it uses the Clebsch--Gordan transform as its only source of nonlinearity, thus avoiding repeated forward and backward Fourier transforms. The underlying ideas of the paper generalize to constructing neural networks that are invariant to the action of other compact groups.
Date of publication 2018
Code Programming Language Python

Copyright Researcher 2022