Clustering and Projected Clustering with Adaptive Neighbors

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Feiping Nie, Xiaoqian Wang, Heng Huang
Journal/Conference Name The 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
Paper Category
Paper Abstract Many clustering methods partition the data groups based on the input data similarity matrix. Thus, the clustering results highly depend on the data similarity learning. Because the similarity measurement and data clustering are often conducted in two separated steps, the learned data similarity may not be the optimal one for data clustering and lead to the suboptimal results. In this paper, we propose a novel clustering model to learn the data similarity matrix and clustering structure simultaneously. Our new model learns the data similarity matrix by assigning the adaptive and optimal neighbors for each data point based on the local distances. Meanwhile, the new rank constraint is imposed to the Laplacian matrix of the data similarity matrix, such that the connected components in the resulted similarity matrix are exactly equal to the cluster number. We derive an efficient algorithm to optimize the proposed challenging problem, and show the theoretical analysis on the connections between our method and the K-means clustering, and spectral clustering. We also further extend the new clustering model for the projected clustering to handle the high-dimensional data. Extensive empirical results on both synthetic data and real-world benchmark data sets show that our new clustering methods consistently outperforms the related clustering approaches.
Date of publication 2014
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021