Complete CVDL Methodology for Investigating Hydrodynamic Instabilities

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Matan Rusanovsky, Yehonatan Fridman, Assaf Shimony, Gal Oren, Re'em Harel
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract In fluid dynamics, one of the most important research fields is hydrodynamic instabilities and their evolution in different flow regimes. The investigation of said instabilities is concerned with the highly non-linear dynamics. Currently, three main methods are used for understanding of such phenomenon - namely analytical models, experiments and simulations - and all of them are primarily investigated and correlated using human expertise. In this work we claim and demonstrate that a major portion of this research effort could and should be analysed using recent breakthrough advancements in the field of Computer Vision with Deep Learning (CVDL, or Deep Computer-Vision). Specifically, we target and evaluate specific state-of-the-art techniques - such as Image Retrieval, Template Matching, Parameters Regression and Spatiotemporal Prediction - for the quantitative and qualitative benefits they provide. In order to do so we focus in this research on one of the most representative instabilities, the Rayleigh-Taylor one, simulate its behaviour and create an open-sourced state-of-the-art annotated database (RayleAI). Finally, we use adjusted experimental results and novel physical loss methodologies to validate the correspondence of the predicted results to actual physical reality to prove the models efficiency. The techniques which were developed and proved in this work can be served as essential tools for physicists in the field of hydrodynamics for investigating a variety of physical systems, and also could be used via Transfer Learning to other instabilities research. A part of the techniques can be easily applied on already exist simulation results. All models as well as the data-set that was created for this work, are publicly available at https//
Date of publication 2020
Code Programming Language Java

Copyright Researcher 2022