Complex-valued independent component analysis of natural images

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors V. Laparra, M. Gutmann, J. Malo, & A. Hyvärinen
Journal/Conference Name International Conference on Artificial Neural Networks
Paper Category
Paper Abstract Linear independent component analysis (ICA) learns simple cell receptive fields from natural images. Here, we show that linear complexvalued ICA learns complex cell properties from Fourier-transformed natural images, i.e. two Gabor-like filters with quadrature-phase relationship. Conventional methods for complex-valued ICA assume that the phases of the output signals have uniform distribution. We show here that for natural images the phase distributions are, however, often far from uniform. We thus relax the uniformity assumption and model also the phase of the sources in complex-valued ICA. Compared to the original complex ICA model, the new model provides a better fit to the data, and leads to Gabor filters of qualitatively different shape.
Date of publication 2011
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021