Compression of individual sequences via variable-rate coding.

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors J. Ziv, A. Lempel
Journal/Conference Name IEEE Transactions on Information Theory
Paper Category
Paper Abstract Compressibility of individual sequences by the class of generalized finite-state information-lossless encoders is investigated. These encoders can operate in a variable-rate mode as well as a fixed-rate one, and they allow for any finite-state scheme of variable-length-to-variable-length coding. For every individual infinite sequence x a quantity \rho(x) is defined, called the compressibility of x , which is shown to be the asymptotically attainable lower bound on the compression ratio that can be achieved for x by any finite-state encoder. This is demonstrated by means of a constructive coding theorem and its converse that, apart from their asymptotic significance, also provide useful performance criteria for finite and practical data-compression tasks. The proposed concept of compressibility is also shown to play a role analogous to that of entropy in classical information theory where one deals with probabilistic ensembles of sequences rather than with individual sequences. While the definition of \rho(x) allows a different machine for each different sequence to be compressed, the constructive coding theorem leads to a universal algorithm that is asymptotically optimal for all sequences.
Date of publication 2004
Code Programming Language Python

Copyright Researcher 2022