Computation of lacunarity from covariance of spatial binary maps

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Kassel Hingee, Adrian J. Baddeley, Peter Caccetta, Gopalan Nair
Journal/Conference Name Journal of Agricultural, Biological and Environmental Statistics
Paper Category
Paper Abstract We consider a spatial binary coverage map (binary pixel image) which might represent the spatial pattern of the presence and absence of vegetation in a landscape. ‘Lacunarity’ is a generic term for the nature of gaps in the pattern: a popular choice of summary statistic is the ‘gliding-box lacunarity’ (GBL) curve. GBL is potentially useful for quantifying changes in vegetation patterns, but its applicis hampered by a lack of interpretability and practical difficulties with missing data. In this paper we find a mathematical relationship between GBL and spatial covariance. This leads to new estimators of GBL that tolerate irregular spatial domains and missing data, thus overcoming major weaknesses of the traditional estimator. The relationship gives an explicit formula for GBL of models with known spatial covariance and enables us to predict the effect of changes in the pattern on GBL. Using variance reduction methods for spatial data, we obtain statistically efficient estimators of GBL. The techniques are demonstrated on simulated binary coverage maps and remotely sensed maps of local-scale disturbance and meso-scale fragmentation in Australian forests. Results show in some cases a fourfold reduction in mean integrated squared error and a twentyfold reduction in sensitivity to missing data.Supplementary materials accompanying the paper appear online and include a software implementation in the R language.
Date of publication 2019
Code Programming Language R

Copyright Researcher 2021