Context encoders as a simple but powerful extension of word2vec
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Franziska Horn |
Journal/Conference Name | WS 2017 8 |
Paper Category | Artificial Intelligence |
Paper Abstract | With a simple architecture and the ability to learn meaningful word embeddings efficiently from texts containing billions of words, word2vec remains one of the most popular neural language models used today. However, as only a single embedding is learned for every word in the vocabulary, the model fails to optimally represent words with multiple meanings. Additionally, it is not possible to create embeddings for new (out-of-vocabulary) words on the spot. Based on an intuitive interpretation of the continuous bag-of-words (CBOW) word2vec model's negative sampling training objective in terms of predicting context based similarities, we motivate an extension of the model we call context encoders (ConEc). By multiplying the matrix of trained word2vec embeddings with a word's average context vector, out-of-vocabulary (OOV) embeddings and representations for a word with multiple meanings can be created based on the word's local contexts. The benefits of this approach are illustrated by using these word embeddings as features in the CoNLL 2003 named entity recognition (NER) task. |
Date of publication | 2017 |
Code Programming Language | Python |
Comment |