Corrigendum to A mathematical model of spontaneous calcium(II) oscillations in astrocytes J. Theor. Biol. 251 (2008)

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Maxim Lavrentovich, Sheryl Hemkin
Journal/Conference Name Journal of Theoretical Biology
Paper Category
Paper Abstract Astrocytes exhibit oscillations and waves of Ca2+ ions within their cytosol and it appears that this behavior helps facilitate the astrocyte's interaction with its environment, including its neighboring neurons. Often changes in the oscillatory behavior are initiated by an external stimulus such as glutamate, recently however, it has been observed that oscillations are also initiated spontaneously. We propose here a mathematical model of how spontaneous Ca2+ oscillations arise in astrocytes. This model uses the calcium-induced calcium release and inositol cross-coupling mechanisms coupled with a receptor-independent method for producing inositol (1,4,5)-trisphosphate as the heart of the model. By computationally mimicking experimental constraints we have found that this model provides results that are qualitatively similar to experiment.
Date of publication 2008
Code Programming Language Jupyter Notebook

Copyright Researcher 2022