Covariate balance in simple, stratified and clustered comparative studies

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Ben B. Hansen, Jake Bowers
Journal/Conference Name Statistical Science
Paper Category
Paper Abstract In randomized experiments, treatment and control groups should be roughly the same--balanced--in their distributions of pretreatment variables. But how nearly so? Can descriptive comparisons meaningfully be paired with significance tests? If so, should there be several such tests, one for each pretreatment variable, or should there be a single, omnibus test? Could such a test be engineered to give easily computed $p$-values that are reliable in samples of moderate size, or would simulation be needed for reliable calibration? What new concerns are introduced by random assignment of clusters? Which tests of balance would be optimal? To address these questions, Fisher's randomization inference is applied to the question of balance. Its application suggests the reversal of published conclusions about two studies, one clinical and the other a field experiment in political participation.
Date of publication 2008
Code Programming Language R
Comment

Copyright Researcher 2021