Cross-type Biomedical Named Entity Recognition with Deep Multi-Task Learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Marinka Zitnik, Yu Zhang, Jiawei Han, Xiang Ren, Jingbo Shang, Yuhao Zhang, Curtis Langlotz, Xuan Wang
Journal/Conference Name Bioinformatics
Paper Category
Paper Abstract Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type. Results We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora.
Date of publication 2018
Code Programming Language Multiple

Copyright Researcher 2022