Dance Dance Convolution

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Zachary C. Lipton, Chris Donahue, Julian McAuley
Journal/Conference Name ICML 2017 8
Paper Category
Paper Abstract Dance Dance Revolution (DDR) is a popular rhythm-based video game. Players perform steps on a dance platform in synchronization with music as directed by on-screen step charts. While many step charts are available in standardized packs, players may grow tired of existing charts, or wish to dance to a song for which no chart exists. We introduce the task of learning to choreograph. Given a raw audio track, the goal is to produce a new step chart. This task decomposes naturally into two subtasks: deciding when to place steps and deciding which steps to select. For the step placement task, we combine recurrent and convolutional neural networks to ingest spectrograms of low-level audio features to predict steps, conditioned on chart difficulty. For step selection, we present a conditional LSTM generative model that substantially outperforms n-gram and fixed-window approaches.
Date of publication 2017
Code Programming Language Python
Comment

Copyright Researcher 2021