Deblurring Low-Light Images with Light Streaks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Zhe Hu, Sunghyun Cho, Jue Wang, Ming-Hsuan Yang
Journal/Conference Name IEEE Transactions on Pattern Analysis and Machineā€¦
Paper Category
Paper Abstract Images acquired in low-light conditions with handheld cameras are often blurry, so steady poses and long exposure time are required to alleviate this problem. Although significant advances have been made in image deblurring, state-of-the-art approaches often fail on low-light images, as a sufficient number of salient features cannot be extracted for blur kernel estimation. On the other hand, light streaks are common phenomena in low-light images that have not been extensively explored in existing approaches. In this work, we propose an algorithm that utilizes light streaks to facilitate deblurring low-light images. The light streaks, which commonly exist in the low-light blurry images, contain rich information regarding camera motion and blur kernels. A method is developed in this work to detect light streaks for kernel estimation. We introduce a non-linear blur model that explicitly takes light streaks and corresponding light sources into account, and pose them as constraints for estimating the blur kernel in an optimization framework. For practical applications, the proposed algorithm is extended to handle images undergoing non-uniform blur. Experimental results show that the proposed algorithm performs favorably against the state-of-the-art methods on deblurring real-world low-light images.
Date of publication 2018
Code Programming Language MATLAB
Comment

Copyright Researcher 2021