Decorrelated Batch Normalization

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Lei Huang, Dawei Yang, Jia Deng, Bo Lang
Journal/Conference Name CVPR 2018 6
Paper Category
Paper Abstract Batch Normalization (BN) is capable of accelerating the training of deep models by centering and scaling activations within mini-batches. In this work, we propose Decorrelated Batch Normalization (DBN), which not just centers and scales activations but whitens them. We explore multiple whitening techniques, and find that PCA whitening causes a problem we call stochastic axis swapping, which is detrimental to learning. We show that ZCA whitening does not suffer from this problem, permitting successful learning. DBN retains the desirable qualities of BN and further improves BN's optimization efficiency and generalization ability. We design comprehensive experiments to show that DBN can improve the performance of BN on multilayer perceptrons and convolutional neural networks. Furthermore, we consistently improve the accuracy of residual networks on CIFAR-10, CIFAR-100, and ImageNet.
Date of publication 2018
Code Programming Language Multiple

Copyright Researcher 2022