Deep Residual Learning for Weakly-Supervised Relation Extraction

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Yi Yao Huang, William Yang Wang
Journal/Conference Name EMNLP 2017 9
Paper Category
Paper Abstract Deep residual learning (ResNet) is a new method for training very deep neural networks using identity map-ping for shortcut connections. ResNet has won the ImageNet ILSVRC 2015 classification task, and achieved state-of-the-art performances in many computer vision tasks. However, the effect of residual learning on noisy natural language processing tasks is still not well understood. In this paper, we design a novel convolutional neural network (CNN) with residual learning, and investigate its impacts on the task of distantly supervised noisy relation extraction. In contradictory to popular beliefs that ResNet only works well for very deep networks, we found that even with 9 layers of CNNs, using identity mapping could significantly improve the performance for distantly-supervised relation extraction.
Date of publication 2017
Code Programming Language Python
Comment

Copyright Researcher 2022