DeepMerge: Classifying High-redshift Merging Galaxies with Deep Neural Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors J. E. G. Peek, A. Ćiprijanović, G. F. Snyder, B. Nord
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract We investigate and demonstrate the use of convolutional neural networks (CNNs) for the task of distinguishing between merging and non-merging galaxies in simulated images, and for the first time at high redshifts (i.e. $z=2$). We extract images of merging and non-merging galaxies from the Illustris-1 cosmological simulation and apply observational and experimental noise that mimics that from the Hubble Space Telescope; the data without noise form a "pristine" data set and that with noise form a "noisy" data set. The test set classification accuracy of the CNN is $79\%$ for pristine and $76\%$ for noisy. The CNN outperforms a Random Forest classifier, which was shown to be superior to conventional one- or two-dimensional statistical methods (Concentration, Asymmetry, the Gini, $M_{20}$ statistics etc.), which are commonly used when classifying merging galaxies. We also investigate the selection effects of the classifier with respect to merger state and star formation rate, finding no bias. Finally, we extract Grad-CAMs (Gradient-weighted Class Activation Mapping) from the results to further assess and interrogate the fidelity of the classification model.
Date of publication 2020
Code Programming Language Jupyter Notebook

Copyright Researcher 2022