Derivative Delay Embedding: Online Modeling of Streaming Time Series

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Zhifei Zhang, Hairong Qi, Yang Song, Wei Wang
Journal/Conference Name International Conference on Information and Knowledge Management, Proceedings
Paper Category
Paper Abstract The staggering amount of streaming time series coming from the real world calls for more efficient and effective online modeling solution. For time series modeling, most existing works make some unrealistic assumptions such as the input data is of fixed length or well aligned, which requires extra effort on segmentation or normalization of the raw streaming data. Although some literature claim their approaches to be invariant to data length and misalignment, they are too time-consuming to model a streaming time series in an online manner. We propose a novel and more practical online modeling and classification scheme, DDE-MGM, which does not make any assumptions on the time series while maintaining high efficiency and state-of-the-art performance. The derivative delay embedding (DDE) is developed to incrementally transform time series to the embedding space, where the intrinsic characteristics of data is preserved as recursive patterns regardless of the stream length and misalignment. Then, a non-parametric Markov geographic model (MGM) is proposed to both model and classify the pattern in an online manner. Experimental results demonstrate the effectiveness and superior classification accuracy of the proposed DDE-MGM in an online setting as compared to the state-of-the-art.
Date of publication 2016
Code Programming Language Matlab

Copyright Researcher 2022