Detecting Replay Attacks Using Multi-Channel Audio: A Neural Network-Based Method

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Christian Poellabauer, Jian Yang, Yuan Gong
Journal/Conference Name IEEE Signal Processing Letters
Paper Category
Paper Abstract With the rapidly growing number of security-sensitive systems that use voice as the primary input, it becomes increasingly important to address these systems' potential vulnerability to replay attacks. Previous efforts to address this concern have focused primarily on single-channel audio. In this paper, we introduce a novel neural network-based replay attack detection model that further leverages spatial information of multi-channel audio and is able to significantly improve the replay attack detection performance.
Date of publication 2020
Code Programming Language Python

Copyright Researcher 2022