DialogueRNN: An Attentive RNN for Emotion Detection in Conversations

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Devamanyu Hazarika, Soujanya Poria, Navonil Majumder, Rada Mihalcea, Alexander Gelbukh, Erik Cambria
Journal/Conference Name 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Paper Category
Paper Abstract Emotion detection in conversations is a necessary step for a number of applications, including opinion mining over chat history, social media threads, debates, argumentation mining, understanding consumer feedback in live conversations, etc. Currently, systems do not treat the parties in the conversation individually by adapting to the speaker of each utterance. In this paper, we describe a new method based on recurrent neural networks that keeps track of the individual party states throughout the conversation and uses this information for emotion classification. Our model outperforms the state of the art by a significant margin on two different datasets.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022