Direct observation of bimolecular reactions of ultracold KRb molecules

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors M-G Hu, Y Liu, +7 authors K-K Ni
Journal/Conference Name Science
Paper Category
Paper Abstract Femtochemistry techniques have been instrumental in accessing the short time scales necessary to probe transient intermediates in chemical reactions. In this study, we took the contrasting approach of prolonging the lifetime of an intermediate by preparing reactant molecules in their lowest rovibronic quantum state at ultralow temperatures, thereby markedly reducing the number of exit channels accessible upon their mutual collision. Using ionization spectroscopy and velocity-map imaging of a trapped gas of potassium-rubidium (KRb) molecules at a temperature of 500 nanokelvin, we directly observed reactants, intermediates, and products of the reaction 40K87Rb + 40K87Rb → K2Rb2* → K2 + Rb2. Beyond observation of a long-lived, energy-rich intermediate complex, this technique opens the door to further studies of quantum-state–resolved reaction dynamics in the ultracold regime.
Date of publication 2019
Code Programming Language MATLAB
Comment

Copyright Researcher 2021