Distributed lag linear and non-linear models in R: the package dlnm

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Antonio Gasparrini
Journal/Conference Name Journal of statistical software
Paper Category
Paper Abstract Distributed lag non-linear models (DLNMs) represent a modeling framework to flexibly describe associations showing potentially non-linear and delayed effects in time series data. This methodology rests on the definition of a crossbasis, a bi-dimensional functional space expressed by the combination of two sets of basis functions, which specify the relationships in the dimensions of predictor and lags, respectively. This framework is implemented in the R package dlnm, which provides functions to perform the broad range of models within the DLNM family and then to help interpret the results, with an emphasis on graphical representation. This paper offers an overview of the capabilities of the package, describing the conceptual and practical steps to specify and interpret DLNMs with an example of application to real data.
Date of publication 2011
Code Programming Language R
Comment

Copyright Researcher 2021