Distributed Optimal Power Flow Algorithm for Radial Networks, I: Balanced Single Phase Case

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Qiuyu Peng, S. Low
Journal/Conference Name I
Paper Category
Paper Abstract The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally, OPF is solved in a centralized manner. With increasing penetration of renewable energy in distribution system, we need faster and distributed solutions for real-time feedback control. This is difficult due to the nonlinearity of the power flow equations. In this paper, we propose a solution for balanced radial networks. It exploits recent results that suggest solving for a globally optimal solution of OPF over a radial network through the second-order cone program relaxation. Our distributed algorithm is based on alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative method, our decomposition allows us to derive closed form solutions for these subproblems, greatly speeding up each ADMM iteration. We illustrate the scalability of the proposed algorithm by simulating it on a real-world 2065-bus distribution network.
Date of publication 2018
Code Programming Language MATLAB
Comment

Copyright Researcher 2022