Early Active Learning via Robust Representation and Structured Sparsity

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Feiping Nie, Hua Wang, Heng Huang, Chris Ding
Journal/Conference Name TheĀ 23rd International Joint Conference on Artificial IntelligenceĀ (IJCAI)
Paper Category
Paper Abstract Labeling training data is quite time-consuming but essential for supervised learning models. To solve this problem, the active learning has been studied and applied to select the informative and representative data points for labeling. However, during the early stage of experiments, only a small number (or none) of labeled data points exist, thus the most representative samples should be selected first. In this paper, we propose a novel robust active learning method to handle the early stage experimental design problem and select the most representative data points. Selecting the representative samples is an NP-hard problem, thus we employ the structured sparsity-inducing norm to relax the objective to an efficient convex formulation. Meanwhile, the robust sparse representation loss function is utilized to reduce the effect of outliers. A new efficient optimization algorithm is introduced to solve our non-smooth objective with low computational cost and proved global convergence. Empirical results on both single-label and multi-label classification benchmark data sets show the promising results of our method.
Date of publication 2013
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021