Efficient Discovery of the Most Interesting Associations

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Geoffrey I. Webb, Jilles Vreeken
Journal/Conference Name TKDD
Paper Category
Paper Abstract Self-sufficient itemsets have been proposed as an effective approach to summarizing the key associations in data. However, their computation appears highly demanding, as assessing whether an itemset is self-sufficient requires consideration of all pairwise partitions of the itemset into pairs of subsets as well as consideration of all supersets. This article presents the first published algorithm for efficiently discovering self-sufficient itemsets. This branch-and-bound algorithm deploys two powerful pruning mechanisms based on upper bounds on itemset value and statistical significance level. It demonstrates that finding top-k productive and nonredundant itemsets, with postprocessing to identify those that are not independently productive, can efficiently identify small sets of key associations. We present extensive evaluation of the strengths and limitations of the technique, including comparisons with alternative approaches to finding the most interesting associations.
Date of publication 2013
Code Programming Language R

Copyright Researcher 2022