Efficient parametrization of multi-domain deep neural networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Andrea Vedaldi, Sylvestre-Alvise Rebuffi, Hakan Bilen
Journal/Conference Name CVPR 2018 6
Paper Category
Paper Abstract A practical limitation of deep neural networks is their high degree of specialization to a single task and visual domain. Recently, inspired by the successes of transfer learning, several authors have proposed to learn instead universal, fixed feature extractors that, used as the first stage of any deep network, work well for several tasks and domains simultaneously. Nevertheless, such universal features are still somewhat inferior to specialized networks. To overcome this limitation, in this paper we propose to consider instead universal parametric families of neural networks, which still contain specialized problem-specific models, but differing only by a small number of parameters. We study different designs for such parametrizations, including series and parallel residual adapters, joint adapter compression, and parameter allocations, and empirically identify the ones that yield the highest compression. We show that, in order to maximize performance, it is necessary to adapt both shallow and deep layers of a deep network, but the required changes are very small. We also show that these universal parametrization are very effective for transfer learning, where they outperform traditional fine-tuning techniques.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022