Efficient posterior simulation for cointegrated models with priors on the cointegration space

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Gary Koop, Roberto León-González, Rodney W. Strachan
Journal/Conference Name Econometric Reviews
Paper Category
Paper Abstract A message coming out of the recent Bayesian literature on cointegration is that it is important to elicit a prior on the space spanned by the cointegrating vectors (as opposed to a particular identified choice for these vectors). In previous work, such priors have been found to greatly complicate computation. In this article, we develop algorithms to carry out efficient posterior simulation in cointegration models. In particular, we develop a collapsed Gibbs sampling algorithm which can be used with just-identifed models and demonstrate that it has very large computational advantages relative to existing approaches. For over-identifed models, we develop a parameter-augmented Gibbs sampling algorithm and demonstrate that it also has attractive computational properties.
Date of publication 2009
Code Programming Language R
Comment

Copyright Researcher 2021