Emittance preservation of an electron beam in a loaded quasilinear plasma wakefield

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Veronica K. Berglyd Olsen, Erik Adli, Patric Muggli
Journal/Conference Name Physical Review Accelerators and Beams
Paper Category
Paper Abstract We investigate beam loading and emittance preservation for a high-charge electron beam being accelerated in quasilinear plasma wakefields driven by a short proton beam. The structure of the studied wakefields are similar to those of a long, modulated proton beam, such as the AWAKE proton driver. We show that by properly choosing the electron beam parameters and exploiting two well known effects, beam loading of the wakefield and full blow out of plasma electrons by the accelerated beam, the electron beam can gain large amounts of energy with a narrow final energy spread (%-level) and without significant emittance growth.
Date of publication 2018
Code Programming Language MATLAB

Copyright Researcher 2022