Empirical Bayes Analysis of RNA-seq Data for Detection of Gene Expression Heterosis

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Jarad Niemi, Eric Mittman, Will Landau, Dan Nettleton
Journal/Conference Name Journal of Agricultural, Biological, and Environmental Statistics
Paper Category
Paper Abstract An important type of heterosis, known as hybrid vigor, refers to the enhancements in the phenotype of hybrid progeny relative to their inbred parents. Although hybrid vigor is extensively utilized in agriculture, its molecular basis is still largely unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers are measuring transcript abundance levels of thousands of genes in parental inbred lines and their hybrid offspring using RNA sequencing (RNA-seq) technology. The resulting data allow researchers to search for evidence of gene expression heterosis as one potential molecular mechanism underlying heterosis of agriculturally important traits. The null hypotheses of greatest interest in testing for gene expression heterosis are composite null hypotheses that are difficult to test with standard statistical approaches for RNA-seq analysis. To address these shortcomings, we develop a hierarchical negative binomial model and draw inferences using a computationally tractable empirical Bayes approach to inference. We demonstrate improvements over alternative methods via a simulation study based on a maize experiment and then analyze that maize experiment with our newly proposed methodology. This article has supplementary material online.
Date of publication 2015
Code Programming Language PostScript
Comment

Copyright Researcher 2021