Enhanced Group Sparse Beamforming for Green Cloud-RAN: A Random Matrix Approach

View Researcher's Other Codes

MATLAB code for the paper: “Enhanced group sparse beamforming for dense green Cloud-RAN: A random matrix approach”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Yuanming Shi, Jun Zhang, Wei Chen, and Khaled B. Letaief
Journal/Conference Name IEEE Transactions on Wireless Communication
Paper Category
Paper Abstract Group sparse beamforming is a general framework to minimize the network power consumption for cloud radio access networks (Cloud-RANs), which, however, suffers high computational complexity. In particular, a complex optimization problem needs to be solved to obtain the remote radio head (RRH) ordering criterion in each transmission block, which will help to determine the active RRHs and the associated fronthaul links. In this paper, we propose innovative approaches to reduce the complexity of this key step in group sparse beamforming. Specifically, we first develop a smoothed ℓp-minimization approach with the iterative reweighted-ℓ2 algorithm to return a Karush-Kuhn-Tucker (KKT) point solution, as well as enhancing the capability of inducing group sparsity in the beamforming vectors. By leveraging the Lagrangian duality theory, we obtain closed-form solutions at each iteration to reduce the computational complexity. The well-structured solutions provide the opportunities to apply the large-dimensional random matrix theory to derive deterministic approximations for the RRH ordering criterion. Such an approach helps to guide the RRH selection only based on the statistical channel state information (CSI), which does not require frequent update, thereby significantly reducing the computation overhead. Simulation results shall demonstrate the performance gains of the proposed ℓp-minimization approach, as well as the effectiveness of the large system analysis based framework for computing RRH ordering criterion.
Date of publication 2018
Code Programming Language MATLAB
Comment

Copyright Researcher 2021