Escaping From Saddle Points — Online Stochastic Gradient for Tensor Decomposition

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Furong Huang, Chi Jin, Rong Ge, Yang Yuan
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract We analyze stochastic gradient descent for optimizing non-convex functions. In many cases for non-convex functions the goal is to find a reasonable local minimum, and the main concern is that gradient updates are trapped in saddle points. In this paper we identify strict saddle property for non-convex problem that allows for efficient optimization. Using this property we show that stochastic gradient descent converges to a local minimum in a polynomial number of iterations. To the best of our knowledge this is the first work that gives global convergence guarantees for stochastic gradient descent on non-convex functions with exponentially many local minima and saddle points. Our analysis can be applied to orthogonal tensor decomposition, which is widely used in learning a rich class of latent variable models. We propose a new optimization formulation for the tensor decomposition problem that has strict saddle property. As a result we get the first online algorithm for orthogonal tensor decomposition with global convergence guarantee.
Date of publication 2015
Code Programming Language Jupyter Notebook
Comment

Copyright Researcher 2022