Estimating daily meteorological data and downscaling climate models over landscapes
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Authors | Miquel de Cáceres, Nicolas K Martin-StPaul, Marco Turco, Antoine Cabon, Victor Granda |
Journal/Conference Name | Environmental Modelling and Software |
Paper Category | Other |
Paper Abstract | High-resolution meteorological data are necessary to understand and predict climate-driven impacts on the structure and function of terrestrial ecosystems. However, the spatial resolution of climate reanalysis data and climate model outputs is often too coarse for studies at local/landscape scales. Additionally, climate model projections usually contain important biases, requiring the application of statistical corrections. Here we present ‘meteoland’, an R package that integrates several tools to facilitate the estimation of daily weather over landscapes, both under current and future conditions. The package contains functions: (1) to interpolate daily weather including topographic effects; and (2) to correct the biases of a given weather series (e.g., climate model outputs). We illustrate and validate the functions of the package using weather station data from Catalonia (NE Spain), re-analysis data and climate model outputs for a specific county. We conclude with a discussion of current limitations and potential improvements of the package. |
Date of publication | 2018 |
Code Programming Language | R |
Comment |