Estimating Mixture Models via Mixtures of Polynomials

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Arun Tejasvi Chaganty, Sida I. Wang, Percy Liang
Journal/Conference Name NeurIPS 2015 12
Paper Category
Paper Abstract Mixture modeling is a general technique for making any simple model more expressive through weighted combination. This generality and simplicity in part explains the success of the Expectation Maximization (EM) algorithm, in which updates are easy to derive for a wide class of mixture models. However, the likelihood of a mixture model is non-convex, so EM has no known global convergence guarantees. Recently, method of moments approaches offer global guarantees for some mixture models, but they do not extend easily to the range of mixture models that exist. In this work, we present Polymom, an unifying framework based on method of moments in which estimation procedures are easily derivable, just as in EM. Polymom is applicable when the moments of a single mixture component are polynomials of the parameters. Our key observation is that the moments of the mixture model are a mixture of these polynomials, which allows us to cast estimation as a Generalized Moment Problem. We solve its relaxations using semidefinite optimization, and then extract parameters using ideas from computer algebra. This framework allows us to draw insights and apply tools from convex optimization, computer algebra and the theory of moments to study problems in statistical estimation.
Date of publication 2016
Code Programming Language Multiple
Comment

Copyright Researcher 2021