Estimating Population Abundance Using Sightability Models: R SightabilityModel Package

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors John Fieberg
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract Sightability models are binary logistic-regression models used to estimate and adjust for visibility bias in wildlife-population surveys (Steinhorst and Samuel'89). Estimation proceeds in 2 stages: (1) Sightability trials are conducted with marked individuals, and logistic regression is used to estimate the probability of detection as a function of available covariates (e.g., visual obstruction, group size). (2) The fitted model is used to adjust counts (from future surveys) for animals that were not observed. A modified Horvitz-Thompson estimator is used to estimate abundance: counts of observed animal groups are divided by their inclusion probabilites (determined by plot-level sampling probabilities and the detection probabilities estimated from stage 1). We provide a brief historical account of the approach, clarifying and documenting suggested modifications to the variance estimators originally proposed by Steinhorst and Samuel (1989). We then introduce a new R package, SightabilityModel, for estimating abundance using this technique. Lastly, we illustrate the software with a series of examples using data collected from moose (Alces alces) in northeastern Minnesota and mountain goats (Oreamnos americanus) in Washington State.
Date of publication 2012
Code Programming Language R

Copyright Researcher 2021