Evaluation of Croatian Word Embeddings

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Slobodan Beliga, Lukas Svoboda
Journal/Conference Name LREC 2018 5
Paper Category
Paper Abstract Croatian is poorly resourced and highly inflected language from Slavic language family. Nowadays, research is focusing mostly on English. We created a new word analogy corpus based on the original English Word2vec word analogy corpus and added some of the specific linguistic aspects from Croatian language. Next, we created Croatian WordSim353 and RG65 corpora for a basic evaluation of word similarities. We compared created corpora on two popular word representation models, based on Word2Vec tool and fastText tool. Models has been trained on 1.37B tokens training data corpus and tested on a new robust Croatian word analogy corpus. Results show that models are able to create meaningful word representation. This research has shown that free word order and the higher morphological complexity of Croatian language influences the quality of resulting word embeddings.
Date of publication 2017
Code Programming Language TeX
Comment

Copyright Researcher 2021