Exploring and Improving Robustness of Multi Task Deep Neural Networks via Domain Agnostic Defenses

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Kashyap Coimbatore Murali
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract In this paper, we explore the robustness of the Multi-Task Deep Neural Networks (MT-DNN) against non-targeted adversarial attacks across Natural Language Understanding (NLU) tasks as well as some possible ways to defend against them. Liu et al., have shown that the Multi-Task Deep Neural Network, due to the regularization effect produced when training as a result of its cross task data, is more robust than a vanilla BERT model trained only on one task (1.1%-1.5% absolute difference). We further show that although the MT-DNN has generalized better, making it easily transferable across domains and tasks, it can still be compromised as after only 2 attacks (1-character and 2-character) the accuracy drops by 42.05% and 32.24% for the SNLI and SciTail tasks. Finally, we propose a domain agnostic defense which restores the model's accuracy (36.75% and 25.94% respectively) as opposed to a general-purpose defense or an off-the-shelf spell checker.
Date of publication 2020
Code Programming Language Python
Comment

Copyright Researcher 2022