Fair Kernel Regression via Fair Feature Embedding in Kernel Space

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Hui Hu, Chao Lan, Austin Okray
Journal/Conference Name Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI
Paper Category
Paper Abstract In recent years, there have been significant efforts on mitigating unethical demographic biases in machine learning methods. However, very little is done for kernel methods. In this paper, we propose a new fair kernel regression method via fair feature embedding (FKR-F$^2$E) in kernel space. Motivated by prior works on feature selection in kernel space and feature processing for fair machine learning, we propose to learn fair feature embedding functions that minimize demographic discrepancy of feature distributions in kernel space. Compared to the state-of-the-art fair kernel regression method and several baseline methods, we show FKR-F$^2$E achieves significantly lower prediction disparity across three real-world data sets.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2022