Fast Patch-based Style Transfer of Arbitrary Styles

View Researcher II's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Tian Qi Chen, Mark W. Schmidt
Journal/Conference Name ArXiv
Paper Category
Paper Abstract Artistic style transfer is an image synthesis problem where the content of an image is reproduced with the style of another. Recent works show that a visually appealing style transfer can be achieved by using the hidden activations of a pretrained convolutional neural network. However, existing methods either apply (i) an optimization procedure that works for any style image but is very expensive, or (ii) an efficient feedforward network that only allows a limited number of trained styles. In this work we propose a simpler optimization objective based on local matching that combines the content structure and style textures in a single layer of the pretrained network. We show that our objective has desirable properties such as a simpler optimization landscape, intuitive parameter tuning, and consistent frame-by-frame performance on video. Furthermore, we use 80,000 natural images and 80,000 paintings to train an inverse network that approximates the result of the optimization. This results in a procedure for artistic style transfer that is efficient but also allows arbitrary content and style images.
Date of publication 2016
Code Programming Language Lua

Copyright Researcher II 2021