Faster ARMA maximum likelihood estimation

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors A. Ian McLeod, Ying Zhang
Journal/Conference Name Computational Statistics & Data Analysis
Paper Category
Paper Abstract A new likelihood based AR approximation is given for ARMA models. The usual algorithms for the computation of the likelihood of an ARMA model require O(n) flops per function evaluation. Using our new approximation, an algorithm is developed which requires only O(1) flops in repeated likelihood evaluations. In most cases, the new algorithm gives results identical to or very close to the exact maximum likelihood estimate (MLE). This algorithm is easily implemented in high level quantitative programming environments (QPEs) such as Mathematica, MatLab and R. In order to obtain reasonable speed, previous ARMA maximum likelihood algorithms are usually implemented in C or some other machine efficient language. With our algorithm it is easy to do maximum likelihood estimation for long time series directly in the QPE of your choice. The new algorithm is extended to obtain the MLE for the mean parameter. Simulation experiments which illustrate the effectiveness of the new algorithm are discussed. Mathematica and R packages which implement the algorithm discussed in this paper are available [McLeod, A.I., Zhang, Y., 2007. Online supplements to ''Faster ARMA Maximum Likelihood Estimation'', ]. Based on these package implementations, it is expected that the interested researcher would be able to implement this algorithm in other QPEs.
Date of publication 2008
Code Programming Language R
Comment

Copyright Researcher 2021