Flexible modeling of conditional distributions using smooth mixtures of asymmetric student t densities

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors F. Y. Li, Mattias Villani, Robert Kohn
Journal/Conference Name Journal of Statistical Planning and Inference
Paper Category
Paper Abstract A general model is proposed for flexibly estimating the density of a continuous response variable conditional on a possibly high-dimensional set of covariates. The model is a finite mixture of asymmetric student-t densities with covariate dependent mixture weights. The four parameters of the components, the mean, degrees of freedom, scale and skewness, are all modelled as functions of the covariates. Inference is Bayesian and the computation is carried out using Markov chain Monte Carlo simulation. To enable model parsimony, a variable selection prior is used in each set of covariates and among the covariates in the mixing weights. The model is used to analyse the distribution of daily stock market returns, and shown to more accurately forecast the distribution of returns than other widely used models for financial data.
Date of publication 2010
Code Programming Language R
Comment

Copyright Researcher 2021