Free-Lunch Saliency via Attention in Atari Agents

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Dmitry Nikulin, Anastasia Ianina, Sergey Nikolenko, Vladimir Aliev
Journal/Conference Name Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019
Paper Category
Paper Abstract We propose a new approach to visualize saliency maps for deep neural network models and apply it to deep reinforcement learning agents trained on Atari environments. Our method adds an attention module that we call FLS (Free Lunch Saliency) to the feature extractor from an established baseline (Mnih et al., 2015). This addition results in a trainable model that can produce saliency maps, i.e., visualizations of the importance of different parts of the input for the agent's current decision making. We show experimentally that a network with an FLS module exhibits performance similar to the baseline (i.e., it is "free", with no performance cost) and can be used as a drop-in replacement for reinforcement learning agents. We also design another feature extractor that scores slightly lower but provides higher-fidelity visualizations. In addition to attained scores, we report saliency metrics evaluated on the Atari-HEAD dataset of human gameplay.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2022