From Phenotype to Genotype: An Association Study of Candidate Phenotypic Markers to Alzheimer’s Disease Relevant SNPs

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Hua Wang, Feiping Nie, Heng Huang, Jingwen Yan, Sungeun Kim, Kwangsik Nho, Shannon L. Risacher, Andrew J. Saykin, Li Shen,
Journal/Conference Name Bioinformatics
Paper Category
Paper Abstract MOTIVATION: Imaging genetic studies typically focus on identifying single-nucleotide polymorphism (SNP) markers associated with imaging phenotypes. Few studies perform regression of SNP values on phenotypic measures for examining how the SNP values change when phenotypic measures are varied. This alternative approach may have a potential to help us discover important imaging genetic associations from a different perspective. In addition, the imaging markers are often measured over time, and this longitudinal profile may provide increased power for differentiating genotype groups. How to identify the longitudinal phenotypic markers associated to disease sensitive SNPs is an important and challenging research topic. RESULTS: Taking into account the temporal structure of the longitudinal imaging data and the interrelatedness among the SNPs, we propose a novel 'task-correlated longitudinal sparse regression' model to study the association between the phenotypic imaging markers and the genotypes encoded by SNPs. In our new association model, we extend the widely used ℓ(2,1)-norm for matrices to tensors to jointly select imaging markers that have common effects across all the regression tasks and time points, and meanwhile impose the trace-norm regularization onto the unfolded coefficient tensor to achieve low rank such that the interrelationship among SNPs can be addressed. The effectiveness of our method is demonstrated by both clearly improved prediction performance in empirical evaluations and a compact set of selected imaging predictors relevant to disease sensitive SNPs.
Date of publication 2012
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021