Functional cartography of complex metabolic networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Roger Guimerà, Luís A. Nunes Amaral
Journal/Conference Name Nature
Paper Category
Paper Abstract High-throughput techniques are leading to an explosive growth in the size of biological databases and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of these data remains, however, a major scientific challenge. Here, we propose a methodology that enables us to extract and display information contained in complex networks1,2,3. Specifically, we demonstrate that we can find functional modules4,5 in complex networks, and classify nodes into universal roles according to their pattern of intra- and inter-module connections. The method thus yields a ‘cartographic representation’ of complex networks. Metabolic networks6,7,8 are among the most challenging biological networks and, arguably, the ones with most potential for immediate applicability9. We use our method to analyse the metabolic networks of twelve organisms from three different superkingdoms. We find that, typically, 80% of the nodes are only connected to other nodes within their respective modules, and that nodes with different roles are affected by different evolutionary constraints and pressures. Remarkably, we find that metabolites that participate in only a few reactions but that connect different modules are more conserved than hubs whose links are mostly within a single module.
Date of publication 2005
Code Programming Language R
Comment

Copyright Researcher 2021