GAP Safe Screening Rules for Sparse-Group Lasso

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Joseph Salmon, Eugene Ndiaye, Olivier Fercoq, Alexandre Gramfort
Journal/Conference Name NeurIPS 2016 12
Paper Category
Paper Abstract For statistical learning in high dimension, sparse regularizations have proven useful to boost both computational and statistical efficiency. In some contexts, it is natural to handle more refined structures than pure sparsity, such as for instance group sparsity. Sparse-Group Lasso has recently been introduced in the context of linear regression to enforce sparsity both at the feature and at the group level. We propose the first (provably) safe screening rules for Sparse-Group Lasso, i.e., rules that allow to discard early in the solver features/groups that are inactive at optimal solution. Thanks to efficient dual gap computations relying on the geometric properties of $\epsilon$-norm, safe screening rules for Sparse-Group Lasso lead to significant gains in term of computing time for our coordinate descent implementation.
Date of publication 2016
Code Programming Language Python
Comment

Copyright Researcher 2022