GP-GAN: Towards Realistic High-Resolution Image Blending

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Kaiqi Huang, Shuai Zheng, Junge Zhang, Huikai Wu
Journal/Conference Name MM 2019 - Proceedings of the 27th ACM International Conference on Multimedia
Paper Category
Paper Abstract It is common but challenging to address high-resolution image blending in the automatic photo editing application. In this paper, we would like to focus on solving the problem of high-resolution image blending, where the composite images are provided. We propose a framework called Gaussian-Poisson Generative Adversarial Network (GP-GAN) to leverage the strengths of the classical gradient-based approach and Generative Adversarial Networks. To the best of our knowledge, it's the first work that explores the capability of GANs in high-resolution image blending task. Concretely, we propose Gaussian-Poisson Equation to formulate the high-resolution image blending problem, which is a joint optimization constrained by the gradient and color information. Inspired by the prior works, we obtain gradient information via applying gradient filters. To generate the color information, we propose a Blending GAN to learn the mapping between the composite images and the well-blended ones. Compared to the alternative methods, our approach can deliver high-resolution, realistic images with fewer bleedings and unpleasant artifacts. Experiments confirm that our approach achieves the state-of-the-art performance on Transient Attributes dataset. A user study on Amazon Mechanical Turk finds that the majority of workers are in favor of the proposed method.
Date of publication 2017
Code Programming Language Multiple

Copyright Researcher 2022