Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index

View Researcher's Other Codes

MATLAB code for the paper: “Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Wufeng Xue, Lei Zhang, Xuanqin Mou, and Alan C. Bovik
Journal/Conference Name IEEE Transactions on Image Processing
Paper Category
Paper Abstract It is an important task to faithfully evaluate the perceptual quality of output images in many applications such as image compression, image restoration and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy – the standard deviation of the GMS map – can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at
Date of publication 2014
Code Programming Language MATLAB

Copyright Researcher 2021