Graphite: Iterative Generative Modeling of Graphs

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Stefano Ermon, Aaron Zweig, Aditya Grover
Journal/Conference Name 36th International Conference on Machine Learning, ICML 2019
Paper Category
Paper Abstract Graphs are a fundamental abstraction for modeling relational data. However, graphs are discrete and combinatorial in nature, and learning representations suitable for machine learning tasks poses statistical and computational challenges. In this work, we propose Graphite, an algorithmic framework for unsupervised learning of representations over nodes in large graphs using deep latent variable generative models. Our model parameterizes variational autoencoders (VAE) with graph neural networks, and uses a novel iterative graph refinement strategy inspired by low-rank approximations for decoding. On a wide variety of synthetic and benchmark datasets, Graphite outperforms competing approaches for the tasks of density estimation, link prediction, and node classification. Finally, we derive a theoretical connection between message passing in graph neural networks and mean-field variational inference.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022