Grounded Textual Entailment
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Alberto Testoni, Marc Tanti, Hoa Trong Vu, Aliia Erofeeva, Somayeh Jafaritazehjan, Claudio Greco, Guido Linders, Albert Gatt, Raffaella Bernardi |
Journal/Conference Name | COLING 2018 8 |
Paper Category | Artificial Intelligence |
Paper Abstract | Capturing semantic relations between sentences, such as entailment, is a long-standing challenge for computational semantics. Logic-based models analyse entailment in terms of possible worlds (interpretations, or situations) where a premise P entails a hypothesis H iff in all worlds where P is true, H is also true. Statistical models view this relationship probabilistically, addressing it in terms of whether a human would likely infer H from P. In this paper, we wish to bridge these two perspectives, by arguing for a visually-grounded version of the Textual Entailment task. Specifically, we ask whether models can perform better if, in addition to P and H, there is also an image (corresponding to the relevant "world" or "situation"). We use a multimodal version of the SNLI dataset (Bowman et al., 2015) and we compare "blind" and visually-augmented models of textual entailment. We show that visual information is beneficial, but we also conduct an in-depth error analysis that reveals that current multimodal models are not performing "grounding" in an optimal fashion. |
Date of publication | 2018 |
Code Programming Language | Python |
Comment |