HAL — The Missing Piece of the Puzzle for Hardware Reverse Engineering, Trojan Detection and Insertion

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Marc Fyrbiak, Sebastian Wallat, P. Swierczynski, Max Hoffmann, Sebastian Hoppach, Matthias Wilhelm, Tobias Weidlich, R. Tessier, C. Paar
Journal/Conference Name I
Paper Category
Paper Abstract Hardware manipulations pose a serious threat to numerous systems, ranging from a myriad of smart-X devices to military systems. In many attack scenarios an adversary merely has access to the low-level, potentially obfuscated gate-level netlist. In general, the attacker possesses minimal information and faces the costly and time-consuming task of reverse engineering the design to identify security-critical circuitry, followed by the insertion of a meaningful hardware Trojan. These challenges have been considered only in passing by the research community. The contribution of this work is threefold First, we present HAL, a comprehensive reverse engineering and manipulation framework for gate-level netlists. HAL allows automating defensive design analysis (e.g., including arbitrary Trojan detection algorithms with minimal effort) as well as offensive reverse engineering and targeted logic insertion. Second, we present a novel static analysis Trojan detection technique ANGEL which considerably reduces the false-positive detection rate of the detection technique FANCI. Furthermore, we demonstrate that ANGEL is capable of automatically detecting Trojans obfuscated with DeTrust. Third, we demonstrate how a malicious party can semi-automatically inject hardware Trojans into third-party designs. We present reverse engineering algorithms to disarm and trick cryptographic self-tests, and subtly leak cryptographic keys without any a priori knowledge of the design's internal workings.
Date of publication 2019
Code Programming Language C++

Copyright Researcher 2022