Hidden Semi Markov Models for Multiple Observation Sequences: The mhsmm Package for R
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Authors | J. Michael O'connell, Søren Højsgaard |
Journal/Conference Name | Journal of Statistical Software |
Paper Category | Other |
Paper Abstract | This paper describes the R package mhsmm which implements estimation and prediction methods for hidden Markov and semi-Markov models for multiple observation sequences. Such techniques are of interest when observed data is thought to be dependent on some unobserved (or hidden) state. Hidden Markov models only allow a geometrically distributed sojourn time in a given state, while hidden semi-Markov models extend this by allowing an arbitrary sojourn distribution. We demonstrate the software with simulation examples and an application involving the modelling of the ovarian cycle of dairy cows. |
Date of publication | 2011 |
Code Programming Language | R |
Comment |