Hierarchical Transformers for Long Document Classification

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Raghavendra Pappagari, Yishay Carmiel, Najim Dehak, Piotr Żelasko, Jesús Villalba
Journal/Conference Name 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
Paper Category
Paper Abstract BERT, which stands for Bidirectional Encoder Representations from Transformers, is a recently introduced language representation model based upon the transfer learning paradigm. We extend its fine-tuning procedure to address one of its major limitations - applicability to inputs longer than a few hundred words, such as transcripts of human call conversations. Our method is conceptually simple. We segment the input into smaller chunks and feed each of them into the base model. Then, we propagate each output through a single recurrent layer, or another transformer, followed by a softmax activation. We obtain the final classification decision after the last segment has been consumed. We show that both BERT extensions are quick to fine-tune and converge after as little as 1 epoch of training on a small, domain-specific data set. We successfully apply them in three different tasks involving customer call satisfaction prediction and topic classification, and obtain a significant improvement over the baseline models in two of them.
Date of publication 2019
Code Programming Language Jupyter Notebook

Copyright Researcher 2022