High-Dimensional A-Learning for Optimal Dynamic Treatment Regimes

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Chengchun Shi, Alin Fan, Rui Song, Wenbin Lu
Journal/Conference Name Annals of statistics
Paper Category
Paper Abstract Precision medicine is a medical paradigm that focuses on finding the most effective treatment decision based on individual patient information. For many complex diseases, such as cancer, treatment decisions need to be tailored over time according to patients' responses to previous treatments. Such an adaptive strategy is referred as a dynamic treatment regime. A major challenge in deriving an optimal dynamic treatment regime arises when an extraordinary large number of prognostic factors, such as patient's genetic information, demographic characteristics, medical history and clinical measurements over time are available, but not all of them are necessary for making treatment decision. This makes variable selection an emerging need in precision medicine. In this paper, we propose a penalized multi-stage A-learning for deriving the optimal dynamic treatment regime when the number of covariates is of the non-polynomial (NP) order of the sample size. To preserve the double robustness property of the A-learning method, we adopt the Dantzig selector which directly penalizes the A-leaning estimating equations. Oracle inequalities of the proposed estimators for the parameters in the optimal dynamic treatment regime and error bounds on the difference between the value functions of the estimated optimal dynamic treatment regime and the true optimal dynamic treatment regime are established. Empirical performance of the proposed approach is evaluated by simulations and illustrated with an application to data from the STAR*D study.
Date of publication 2018
Code Programming Language R

Copyright Researcher 2021